Analog and Digital Effects Processing Technology (ADEPT)

Group C

Diego Conterno - CpE Tyler Michaud - EE Alejandro Porcar - CpE Dylan Walter - EE

Goals and Objectives

Motivation

- Fusion of audio engineering, music technology, and sound design
- Close the gap between technology and music
- Provide new alternatives for musicians who want to stand out and shape their sound in a unique way
- Have a creative impact on musicians with an interest in electrical and computer engineering

Objectives

- Affordable
- Easy to Use
- Low Current Draw
- Low Noise Level
- Reliable

Requirements and Specifications

- Analog-to-Digital Conversion
- High Input Impedance
- Low Output Impedance
- Looper Functionality
- Standard ¼" Instrument Cable Compatibility
- 9V Power
- JTAG/SWD Programmability
- LCD Menu and Selection Screen
- Dual Footswitch Functionality

Block Diagram

- Electrical Engineering Team:
 - Tyler Michaud
 - Dylan Walter
- Computer Engineering Team:
 - Diego Conterno
 - Alejandro Porcar

Hardware Design

Footswitches

- 3PDT (3-Pole, Double Throw) mechanical true bypass latching footswitch
 - Used to turn the effect on and off
- SPST (Single Pole, Single Throw) momentary footswitch
 - Used for tap tempo and looper

Tone and Volume Controls

Tone Control

- Adjusts the cutoff frequency of the instrument signal in order to make the effect sound brighter or darker
- Logarithmic Potentiometer in series with First Order RC Low Pass Filter

Volume Control

 Logarithmic Potentiometer placed at the end of pedal circuit to control overall volume

MCU (STM32F446RC)

- Processing performance
- FPU
- Integrated configurable debug
- Cost

CODEC (PCM 3060)

A CODEC contains both an ADC and DAC

- We chose the PCM 3060 because:
 - 24 bit Stereo Resolution
 - -Up to 96kHz Sampling rate (we are using 44.1Khz)
- We will be using I2S Interface to communicate with this chip

Analog Input and Output Buffers

- Active electronic circuit that can provide a change in electrical impedance.
- Maintains signal integrity going in and out of the system.
- Low energy, voltage driven signal.
- High input impedance to low output impedance.
- Emitter follower configuration (standard practice).
- 2N2222A BJT

Power (9VDC)

- 9V to 5V and 9V to 3.3V voltage regulation.
- Linear voltage regulators. For microcontroller, CODEC, and flash memory.
- 78L05Z for 5V and AMS1117 for 3.3V.
- Not power efficient but less noisy.
- 9V and 4.5V(using voltage divider) coupled to input and output buffers.
- Coaxial power jack(2.1mm inside diameter and 5.5mm outside diameter.
- 300mA rating.
- Proper Transient suppression and configuration

Schematic

PCB Layout

- Layout done using AutoCAD Eagle
- 2 board layers for simplicity
- Default trace widths and spacing used
- PCB Dimensions: 94.92mm x 83.80mm

PCB Layout

- PCB Fabrication done by OSH Park
- Both through-hole (THT) and surface mount (SMT) components integrated in our design

Prototyping and Initial Testing

Power Source Emulation

- External power supply verifies that the correct voltage is powering our device.
- Enables us to observe abnormalities of current consumption.

Input and Output Buffer Prototype

Measured input/output signal using oscilloscope and function generator.

 All components used are same values and models as simulation.

Tone Control Prototype

- Two configurations for comparison:
 - o "Bluesbreaker" RC Lowpass Filter
 - "Big Muff" RC Low/Highpass Filter
- Utilizes simple components:
 - Logarithmic potentiometers
 - Passive resistors and capacitors

AMS1117 Voltage Regulator

- 9V External Power source
- DMM to confirm output of 3.3V
- Observed for >2 hours for overheating

78L05 Voltage Regulator

- 9V External Power source
- DMM to confirm output of 5V
- Observed for >2 hours for overheating

Software Design

Software Overview

- IDE
- MCU
- CODEC
- User Interface
- DSP
- Dev board
- Libraries

STM32CubeIDE

- Purpose:
 - Regularly updated
 - STM32CubeMX integrated into it

STM32 CubeMonit

- o Pinout & Clock configuration
- Auto-generated code
- Debugger mode
 - Memory details
- Multi OS support

MCU - Overview

- Clock
 - HSE
- 12S
 - o CODEC
- SPI
 - External Flash Memory
- GPIO
 - Filter parameters
 - Menu select
 - Tap tempo

```
21⊖ void SystemClock_Config(void)
              RCC OscInitTypeDef RCC OscInitStruct = {0};
              RCC ClkInitTypeDef RCC ClkInitStruct = {0};
              RCC PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
              /** Configure the main internal regulator output voltage
         28
              HAL RCC PWR CLK ENABLE();
               HAL PWR VOLTAGESCALING CONFIG(PWR REGULATOR VOLTAGE SCALE1);
             /** Initializes the RCC Oscillators according to the specified parameters
              * in the RCC_OscInitTypeDef structure.
         33
              RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
              RCC_OscInitStruct.HSEState = RCC_HSE_ON;
              RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
              RCC OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSE;
              RCC OscInitStruct.PLL.PLLM = 8;
              RCC OscInitStruct.PLL.PLLN = 336;
              RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
              RCC OscInitStruct.PLL.PLLQ = 7;
              RCC_OscInitStruct.PLL.PLLR = 2;
              if (HAL RCC OscConfig(&RCC_OscInitStruct) != HAL_OK)
         14
         15
                Error_Handler();
static void MX GPIO Init(void)
   GPIO InitTypeDef GPIO InitStruct = {0};
   /* GPIO Ports Clock Enable */
    HAL RCC GPIOC CLK ENABLE();
    HAL RCC_GPIOH_CLK_ENABLE();
   __HAL_RCC_GPIOA_CLK_ENABLE();
    HAL RCC GPIOB CLK ENABLE();
    __HAL_RCC_GPIOD_CLK_ENABLE();
    /*Configure GPIO pin Output Level */
    HAL GPIO WritePin(GPIOC, LCD RS Pin LCD WR Pin LCD E Pin LCD D7 Pin
                             |LCD D6 Pin |LCD D5 Pin |LCD D4 Pin, GPIO PIN RESET);
    /*Configure GPIO pin Output Level */
   HAL GPIO WritePin(TAP TEMPO LED GPIO Port, TAP TEMPO LED Pin, GPIO PIN RESET);
    /*Configure CDTO sin Output Lovel */
```

HSE

- Purpose:
 - Prevent phase shift between CODEC and MCU
- Compatibility
 - o 4 26 MHz
 - o g min of 5 mA/V and Gm _crit_max of 1 mA/V.
- Desired Frequency
 - o 8 MHz
- Auto clock config (STM32CubeIDE)

External Flash Memory

- Purpose:
 - Extra storage for audio
- Record audio at 44.1 kHz
 - 16-bit sample rate (MCU/Flash mem)
- Example: 1 second track recording
 - 1 sec * 44,100 samples/sec * 16 bit/sample = 705, 600 bits (88.2 kB of memory required)
- Common recording length
 - o 1 5 minutes
 - ~10 MB per minute
- 200+ MB external memory

STM32 Nucleo Development Board

- Solid environment for testing and debugging
- Alternative when prototype board undergoes changes
- Same processor
- Cheap alternative for developing from home
- Easier learning curve of IDE and processor programming

Effects

- 1. Bitcrusher: decreases sample rate and bit depth
- 2. Chorus/Vibrato: time-based doubling effect that sinusoidally alters the pitch of the signal using delay lines
- 3. Compressor: alters the dynamics of the signal such that quiet sounds are increased and loud sounds are suppressed
- 4. Distortion: increases gain to the point of saturation
- 5. Delay: repeats signal impulse a certain number of times [feedback] at a specified rate [delay time]
- 6. Filter/Autowah: utilizes an envelope filter in tandem with a cutoff/resonance filter that will sweep through the filter frequencies upon the input of an impulse from the instrument

Effects (cont.)

- 7. Flanger: similar to chorus, but with shorter delay lines
- 8. Looper: allows the user to record, play, overdub, stop/pause, erase musical loops
- 9. Phaser: sweeps through frequency spectrum at a specified rate and depth
- 10. Pitch Shifter/Harmonizer: alters the original pitch of the signal, with the ability to mix with dry signal for harmony
- 11. Reverb: similar to delay but more spatial/atmospheric, and with more delay lines
- 12. Tremolo: rapid increase and decrease in volume at a specified rate and depth

The Synthesis ToolKit Library (STK)

- To reproduce these effects in Code, it is necessary to perform a series of operations to the digitized sound bits
- The STK Library is an audio signal processing library written in C++
- It was designed to facilitate rapid development of audio synthesis software
- Contains several classes and functions to produce different sound effects

Effects Coding Implementation using STK Library

- Using Delay Implementation as Example
- Contains functions to manipulate delay parameters (like setting delay length)
- Distortion can be obtained by combining different functions

User Interface

Figure 52: Prototype Diagram

Administrative Content

Project Planning Tools

- Notion
 - Project management tool
 - Easy record keeper
 - Notifications
 - Lightweight
- Google Drive
 - Storage
 - Share docs
- Discord

Progress Chart

Cost of Materials

Part	Cost
PCB	\$60
PCM3060 CODEC	\$5.69
Resistors	\$2.50
Capacitors	\$2.50
Diodes	\$0.50
Transistors	\$0.25
Potentiometers	\$1.65
STM32 MCU	\$7.45
Flash Memory	\$1.69
External Oscillator	\$19.97
Switches	\$7.80
LEDs	\$0.25
Mono input/output jacks	\$4.00
Metal Enclosure	\$18.00
ST-LINK/V2 USB connector	\$5.93
Regulators	\$4.50
TOTAL	\$142.68

Progress percentage

Research, Documentation & D	Jesign			
Block Diagram	Dylan	100%	1/25/21	1/29/21
Components and parts list	Alejandro, Dylan, Tyler, Diego	100%	1/27/21	4/1/21
Microcontroller/Microprocessor	Diego & Alejandro	100%	1/27/21	4/1/21
ADC/DAC/CODEC	Alejandro & Diego	100%	1/27/21	4/1/21
Network & connections schema	Diego & Dylan	100%	1/27/21	8/1/21
Effects	Diego & Alejandro	100%	1/27/21	8/1/21
Power supply	Tyler & Dylan	100%	1/27/21	8/1/21
PCB layout	Tyler & Dylan	100%	1/27/21	8/1/21
Development				
Tone section breadboarding	Dylan	100%	3/1/21	8/1/21
MCU/CODEC External Clock	Diego & Alejandro	50%	5/1/21	8/1/21
MCU & CODEC Communication	Diego & Alejandro	30%	5/1/21	8/1/21
Power Supply	Tyler & Dylan	100%	5/1/21	8/1/21
Systems Check Routine	Diego & Alejandro	30%	5/1/21	8/1/21
Switches & User interface	Diego & Alejandro	40%	5/1/21	8/1/21
DSP Effects	Diego & Alejandro	30%	5/1/21	8/1/21
PCB layout	Tyler & Dylan	100%	5/1/21	8/1/21

Current Issues and Future Solutions

- JTAG connection
 - Currently working on troubleshooting pinout issues along with ST-link configuration.
 - Solution: Record of bugs, forums, update prototype board. Later PCB revisions may fix this issue.
 - Parallel development: Dev board, breakout printed circuit board.
- LCD display configuration
 - The LCD backlight and contrast pins were not connected in the initial design.
 - Solution: Solder the connection on the PCB using magwire for now. Later PCB revisions will fix this issue.
- Rotary encoder
 - Only able to turn in one direction due to GPIO pin not being mapped properly
 - Solution: Solder the connection on the PCB using magwire for now. Later PCB revisions will fix this issue.
- Software development
 - Need to start assembling libraries, creating LCD menus, mapping parameter knobs, and programming effects algorithms

Thank you!

Questions?

